激光与光电子学进展

天然尖晶石和焰熔法合成尖晶石的 光谱特征对比研究

何珊珊,曹盼,谭红琳,祖恩东* 昆明理工大学材料科学与工程学院,云南昆明 650093

摘要目前的市场上充斥着大量焰熔法合成的尖晶石,仅通过常规方法不能对合成尖晶石和天然尖晶石进行有效 鉴别。为了准确鉴别天然尖晶石和焰熔法合成尖晶石,本文基于傅里叶变换红外光谱、X射线荧光光谱、吸收光谱 和激光拉曼光谱,分别对天然尖晶石和焰熔法合成尖晶石进行分子结构、化学成分、致色机理等的研究,并对拉曼 光谱在405 cm⁻¹位置的谱峰进行洛伦兹拟合,得到半峰全宽值,然后对半峰全宽值进行单因素方差分析。结果表 明:天然尖晶石和焰熔法合成尖晶石的常规宝石学特征基本一致,但它们的分子结构、化学成分、致色机理、半峰全 宽存在显著差异,可为鉴别天然尖晶石和焰熔法合成尖晶石提供理论依据。

关键词 光谱学; 天然尖晶石; 合成尖晶石; 红外光谱; X射线荧光光谱; 拉曼光谱; 半峰全宽
 中图分类号 P575.4 文献标志码 A doi: 10.3788/LOP202158.0530001

Comparative Study on Spectral Characteristics of Natural and Flame-Melting Synthetic Spinels

He Shanshan, Cao Pan, Tan Honglin, Zu Endong*

Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China

Abstract Today's market contains large quantities of flame-melting synthetic spinel, which cannot be effectively identified by conventional methods alone. To accurately identify natural and flame-melting synthetic spinels, we used Fourier transform infrared spectroscopy, X-ray fluorescence spectroscopy, absorption spectroscopy, and laser Raman spectroscopy to study the molecular structures, chemical compositions, and color mechanisms of the spinel specimens. The full-width-at-half-maximum (FWHM) was obtained by Lorentz fitting of the 405 cm⁻¹ peak in the Raman spectrum and analyzed by one-way ANOVA (analysis of variance). Although the conventional gemological characteristics of natural spinel and flame-melting synthetic spinel were almost identical, there are significant differences in molecular structures, chemical compositions, color mechanisms, and FWHMs. The results provide a theoretical basis for distinguishing natural spinel from flame-melting synthetic spinel.

Key words spectroscopy; natural spinel; synthetic spinel; infrared spectrum; X-ray fluorescence spectrum; Raman spectra; full-width-at-half-maximum

OCIS codes 300. 6340; 300. 6450; 300. 3530

收稿日期: 2020-07-06; 修回日期: 2020-07-31; 录用日期: 2020-08-13

基金项目:国家自然科学基金(51662023)

*E-Mail: zend88@163.com

1引言

目前,宝石和黄金消费已成为衡量一个国家经 济实力的标志之一^[1]。宝石资源有限,而社会需求 量却与日俱增,因此合成宝石应运而生。合成宝 石^[1]指的是人们运用现代科学技术的基本原理和方 法,用适宜的材料,通过一定的工艺、技术制造出来 的材料。随着科学技术的发展,合成宝石的方法越 来越多,如合成钻石的高温高压(HTHP)法和化学 气相沉积(CVD)法,合成红宝石和尖晶石的焰熔 法,合成红宝石和蓝宝石的提拉法,合成红宝石和 祖母绿的水热法,合成祖母绿和红宝石的助熔 剂法。

尖晶石是目前市场比较活跃的中档宝石,其部 分品种价格高昂,而合成尖晶石价格约为天然尖晶 石的千分之一。目前,合成尖晶石的方法主要是焰 熔法,原料为碳酸镁 MgCO₃和硫酸铝铵 $(NH_4)_{3}Al_2(SO_4)_{4}\cdot 24H_2O$, 合成尖晶石中 Al_2O_3 和 MgO的质量比为2.5:1^[2]。目前,人们对尖晶石的 研究主要集中在尖晶石的宝石学特征[3-5]、包裹体成 分^[6]、仿冒品鉴别^[7],以及鉴别天然与热处理尖晶 石[8-10]等方面,但研究的重点并未涉及天然尖晶石与 焰熔法合成尖晶石的特征对比。鉴于此,本课题组 拟基于拉曼光谱的半峰全宽,即声子"寿命",来鉴 别天然宝石与合成宝石[11-15]。随着科学技术的发 展,光谱分析在各个领域被广泛应用[16-19]。本文主 要通过对天然尖晶石和焰熔法合成尖晶石的光谱 进行系统研究,并结合声子"寿命",从分子结构、化 学成分、致色机理、半峰全宽等方面对比了天然尖 晶石和焰熔法合成尖晶石的异同点,为鉴别天然尖 晶石和焰熔法合成尖晶石提供一定的理论依据。

2 实验样品与测试方法

2.1 实验样品

本次实验共收集16颗样品,其中,天然尖晶石样品10颗(N1~N10),焰熔法合成尖晶石样品6颗(S1~S6)。

2.2 实验方法

采用德国布鲁克(Bruker)TENSOR27 傅里叶 变换红外光谱仪测量分子结构,测试范围为400~ 6000 cm⁻¹,样品扫描时间为16 s,扫描频率为 10 kHz,光谱分辨率为4 cm⁻¹。在中红外波段采用 的测试方法是反射法,在近红外波段采用的测试方 法是透射法。

采用 ARL QUANT'X EDXRF Analyzer 型 X 射线荧光光谱仪进行成分分析,扫描次数为3次,扫描时间为60s,激发电压为24 kV。

采用吸收光谱法分析致色机理,选用的仪器为 USB2000+光纤光谱仪,积分时间为1600 μs,照明光 源为D65,波长范围为380~750 nm(间隔为10 nm)。 通过采集样品的漫反射信号,得到反射光谱图。

采用 LabRAM HR Evolution 显微共焦激光拉 曼光谱仪对分子振动进行测试分析,激光波长为 532 nm,光斑大小为 50 µm×1000 µm,激光强度为 100 mW,积分次数为 3~5次,波数范围为 400~ 2500 cm⁻¹。

采用 SPSS 社会科学统计软件进行数据分析, 此次实验采用的是单因素方差分析。

$$F = \frac{\frac{S_{\rm A}}{\sigma^2}/(r-1)}{\frac{S_{\rm E}}{\sigma^2}/(n-r)} = \frac{S_{\rm A}/(r-1)}{S_{\rm E}/(n-r)} \sim F(r-1, n-r),$$
(1)

(1)

式中: $S_{\rm E}$ 表示各水平下实验的随机误差,称为误差 平方和或组内平方和; $S_{\rm A}$ 反映因素在不同水平效应 间的差异,称为效应平方和或组间平方和;r为因素 水平的个数;n为全部观测值的个数。F统计量的值 是根据F分布得到的显著性水平(Sig.)。在数理统 计中,对于给定的显著性水平a,确定临界值为 $F_a(r-1,n-r)$,当 $F > F_a(r-1,n-r)$ 时拒绝原 假设,认为因素A在各个水平下对实验结果的影响 是显著的;而在SPSS中,则是以计算显著性概率P 的值来判断各因素的影响是否显著(当P < 0.05时, 认为这些因素的影响是显著的,否则认为其影响不 显著)。

3 测试结果

3.1 常规宝石学特征

常规宝石学参数如表1所示。天然尖晶石和焰 熔法合成尖晶石的折射率相近;焰熔法合成尖晶石 在短波(SW)下具有蓝白色的荧光,荧光强。在分光 镜下观察,部分焰熔法合成尖晶石可看见"Co"谱。 部分天然尖晶石可见愈合裂隙发育或无色短柱状晶 体包体,部分焰熔法合成尖晶石内部可见弯曲生长 纹,但均存在内部干净的样品。因此,对于无"Co" 谱、内部干净的样品,常规宝石学仪器无法进行有效 区分,需运用大型仪器进行光谱学特征鉴别。 S3

S4

S5

S6

		Table 1	Conventional gemological parameters of natural and synthetic spinels					
No.	Color	Refractive index	Ultraviolet fluorescence	Spectroscope	Morphology			
N1	Red	1.718	No	No	Clean inside			
N2	Purple	1.718	No	No	Clean inside			
N3	Blue	1.712	No	No	Healing fissure			
N4	Red	1.718	No	No	Clean inside			
N5	Purple	$1.71(\pm)$	No	No	Healing fissure			
N6	Blue	1.720	No	No	Healing fissure			
N7	Pink	1.720	No	No	Colorless short columnar crystal inclusion			
N8	Pink	1.720	No	No	Clean inside			
N9	Rose	1.720	No	No	Clean inside			
N10	Blue	1.712	No	No	Clean inside			
S1	Blue	1.728	LW: no; SW: blue and white	Со	Curved growth pattern			
S2	Green	1.728	LW: no; SW: blue and white	Со	Curved growth pattern			

No

Со

No

No

表⊥	大然尖晶有与合成尖晶有的吊规玉有字奓数	

Notes: LW and SW represent long and short wavelength, respectively.

LW: no; SW: blue and white

3.2 红外光谱特征

White

Green

White

Blue

1.728

1.728

1.728

1.728

红外吸收光谱是宝石分子结构的具体反映。 利用红外光谱仪选择中红外的"基频区"和"指纹 谱"波段^[20-21]对样品进行红外测试,测试结果如 图 1~2 所示。分析后可以发现: 天然尖晶石在 544、 584、727 cm⁻¹附近有3个吸收峰;焰熔法合成尖晶 石在544、727、845 cm⁻¹附近有3个吸收峰,其中 544 cm⁻¹和 584 cm⁻¹处的吸收峰是由 Al-O 伸缩振 动引起的,727 cm⁻¹和845 cm⁻¹处的吸收峰是由 Mg-O的伸缩振动引起的。

天然尖晶石和焰熔法合成尖晶石的近红外光 谱如图 3~4所示。分析后可以发现:天然尖晶石在

图1 天然尖晶石的中红外光谱

Curved growth pattern

Clean inside

Clean inside

Clean inside

图 2 焰熔法合成尖晶石的中红外光谱

Fig. 2 Mid infrared spectra of flame-melting synthetic spinels

1737、2327、2361、2859、2926、3618 cm⁻¹附近有6个 吸收峰;焰熔法合成尖晶石在2030、2378、2733、 2853、2924、3067、3360、3525 cm⁻¹ 附近有8个吸收 峰,其中1737、2327、2361、2859、2926、2030、2378、 2733、2853、2924、3067 cm⁻¹ 处的吸收峰是由 Mg-O 晶格振动和金属离子的M-O振动引起的,而3360、 3525、3618 cm⁻¹ 处的吸收峰是由 O—H 伸缩振动引 起的; 焰熔法合成的尖晶石在 3360 cm⁻¹和 3525 cm⁻¹ 附近为凹谷吸收肩带,天然尖晶石无此特征。

3.3 X射线荧光光谱特征

由于合成宝石与天然宝石生长的物化条件、生 长环境、致色或杂质元素等存在一定差异,因此,本

文利用X射线荧光光谱仪(XRF)对样品进行成分分析,分析结果如图5~6所示。分析后可以发现: 天然尖晶石和焰熔法合成尖晶石中所含的元素存 在差异,天然尖晶石中含有Fe、V、Ca、Cr、Zn元素, 焰熔法合成尖晶石中含有Fe、Ti、Co、V、Cr元素。 焰熔法合成尖晶石中所含的V、Cr、Fe等元素含量

Fig. 4 Near infrared spectra of flame-melting synthetic spinels 与天然尖晶石中的不同,从而导致其与天然尖晶石 的颜色存在差异,而且焰熔法合成尖晶石中Ti、V、 Cr、Co、Fe等元素的含量也不相同,因此各样品的 颜色也不相同。天然尖晶石样品中含有Zn和Ca元 素,而焰熔法合成尖晶石样品中均未检测到Zn和 Ca元素。

图 5 天然尖晶石的 XRF 光谱。(a) N9 样品;(b) N5 样品

3.4 吸收光谱特征

对样品进行致色机理研究,研究结果表明:不同 色系样品的反射光谱存在显著差异,结果如图7~8 所示。对图7~8进行分析后发现:天然红色系列尖 晶石在470、677、687、698、707、718 nm 附近产生了吸 收,天然紫色系列尖晶石在435 nm和485 nm附近有 弱吸收,天然蓝色系列尖晶石在470 nm 附近有弱吸 收,焰熔法合成的蓝色系列尖晶石在494、550、610、 691 nm 附近有吸收峰, 焰熔法合成的绿色系列尖晶 石在432、466、515 nm 附近有吸收峰,其中677、687、 691、698、707、718 nm 处吸收峰对应的光子能量分别 为1.84、1.81、1.80、1.78、1.75、1.73 eV。产生吸收 的原因如下: Cr^{3+} 从⁴A₂(基态)跃迁到²E,550 nm 和 610 nm 处的吸收峰对应的光子能量分别为 2.26 eV 和 2.00 eV,这两处吸收峰是 Co²⁺ 从 T_{1g}(E) 跃迁到 4T_{1g}(P)产生的弱吸收宽带;466、470、485、494 nm吸 收峰对应的光子能量分别为2.66、2.64、2.56、2.54 eV, 蓝区吸收带是由Fe³⁺外层电子从⁶A₁, 跃迁到

图 8 焰熔法合成尖晶石的反射光谱

Wavelength /nm

700

800

600

0

-5

300

400

500

S4

900

1000

⁴A_{1g}引起的;432 nm 和 435 nm 处吸收峰对应的光子 能量分别为 2.88 eV 和 2.86 eV,这两处吸收峰是 V³⁺从³T_{1g}跃迁到³T_{1g}(³P)产生的紫区吸收峰。分 析后可以得出,天然红色系列尖晶石的致色原因与 元素 Cr、Fe、V 相关,天然蓝色系列、紫色系列尖晶石 的致色原因都与元素 Fe 相关,合成绿色系列、蓝色系 列尖晶石的致色原因都与元素 Fe 和 Co 相关。此外, 合成蓝色系列尖晶石的致色原因还与元素 Cr 相关, 致色元素分析结果与成分分析结果一致。

3.5 拉曼光谱特征

尖晶石含有 Cr、Mg、Fe、Zn、Mn等元素,其化学 式为 MgAl₂O₄,为等轴晶系,空间群为 O_h^7 – Fd3m, 其简正振动模式为 $T_g = A_{1g} + 2A_{2u} + E_g + F_{1g} + 3F_{2g} + 4F_{1u} + 2F_{2u}$,其中 A_{1g} 、 E_g 、 F_{2g} 为拉曼活性振动模 式^[22]。每个样品测试2~4个点,共收集44张拉曼图 谱。天然尖晶石和焰熔法合成尖晶石的拉曼光谱 如图 9~10 所示,可以看出:天然尖晶石的拉曼位移

研究论文

主要在 405、663、766 cm⁻¹附近,其中 405 cm⁻¹处的 拉曼谱峰属于 F_{1u} 振动,663 cm⁻¹处的拉曼谱峰属于 E_g 振动模式,766 cm⁻¹处的拉曼谱峰属于 A_{1g} 振动模 式,Al—O弯曲振动为尖晶石特征拉曼谱峰^[18];焰熔 法合成尖晶石的拉曼位移主要在 405、663、766 cm⁻¹ 附近,与天然尖晶石的拉曼位移一致。由于受到荧 光的干扰,焰熔法合成尖晶石的拉曼谱峰强度较 低,相对于天然尖晶石而言极不明显。

3.6 半峰全宽

半峰全宽值与实验样品的结晶度、生长环境和 晶格内应力有关。合成尖晶石的温压条件比自然 环境下生长的天然尖晶石的温压条件更理想,晶格 应力较小,相应的声子寿命较长,半峰全宽的变化 范围较大。采用Origin软件对拉曼光谱Al—O弯曲 振动产生的谱峰(位于405 cm⁻¹)进行洛伦兹拟合, 拟合结果如图 11~12 所示,拟合结果的误差 R 控制 在 R < 0.5范围内。

天然尖晶石和焰熔法合成尖晶石的半峰全宽 (FWHM)如表2所示。采用社会科学统计软件 SPSS对半峰全宽值进行单因素方差分析,结果保 留三位小数,方差分析结果如表3~4所示。分析后 发现,天然尖晶石半峰全宽的平均值高于焰熔法合 成尖晶石,其显著性概率为0(<0.05),说明天然尖

Fig. 12 Fitting curve of flame-melting synthetic spinel

表 2	尖	晶石的半峰全宽
Table 2	2	FWHM of spinels

Sample No.	$FWHM/cm^{-1}$
N1	13.8,12.5
N2	11.3,11.3
N3	12.0,13.4
N4	10.7,10.0
N5	11.4,10.8,11.9
N6	10.7,11.7
N7	10.4,10.8
N8	10.4,12.0,11.6
N9	13.3,14.3
N10	10.6,11.9
S1	13.9,7.4,7.7,2.8
S2	2.9,3.7,5.3
S3	6.9,3.0,8.8,6.8
S4	5.5,3.5,4.3,4.0
S5	1.3,4.6,3.9
S6	5.0,2.1,3.8,7.7

晶石和焰熔法合成尖晶石的半峰全宽值存在显著 差异。天然尖晶石的半峰全宽均在10.0 cm⁻¹以上, 焰熔法合成尖晶石的半峰全宽在10.0 cm⁻¹以下,可 为鉴别天然尖晶石和焰熔法合成尖晶石提供 依据。

	表3 天然尖晶石和焰熔法合成尖晶石的描述统计量
Table 3	Descriptive statistics of natural spinel and flame-melting synthetic spinel

	Number of	Average of FWHM	Bias of FWHM	Error of FWHM	Confidence interval		Minimum	
Item	FWHM point				Lower	Upper		
					limit	limit	Γ W FIIVI	F W FIIVI
Natural spinel	22	11.673	1.176	0.251	11.152	12.194	10.00	14.30
Synthetic spinel	22	5.223	2.792	0.595	3.985	6.461	1.30	13.90
Total	44	8.448	3.889	0.586	7.265	9.630	1.30	14.30

	表4	天然	尖晶石和	焰熔法	合质	成尖晶.	石的方题	差分析	
Table 4	ANG	OVA	of natural	spinel	and	flame-	melting	synthetic	spinel

Item	Sum of squares	Degree of freedom	Mean square	F	Sig.
Interblock	457.628	1	457.628	99.741	0
Group	192.702	42	4.588		
Total	650.330	43			

4 结 论

本文以天然尖晶石和焰熔法合成尖晶石为研 究对象,通过常规宝石学测试以及傅里叶变换红外 光谱、X射线荧光光谱、吸收光谱和激光拉曼光谱系 统研究了尖晶石的分子结构、化学成分、致色机理, 得出的结论如下:

1) 焰熔法合成尖晶石的常规宝石学分析结果 与天然尖晶石的基本一致;

2) 焰熔法合成尖晶石在 3360 cm⁻¹和 3525 cm⁻¹ 处有凹谷吸收肩带,天然尖晶石无此特征;

3) 天然尖晶石样品中均存在 Zn 和 Ca 元素, 焰 熔法合成尖晶石样品中均未检测到 Zn 和 Ca 元素;

4) 天然红色系列尖晶石的致色原因与元素 Cr、 Fe、V 相关, 天然蓝色系列、紫色系列尖晶石的致色 原因都与元素 Fe 相关, 合成绿色系列、蓝色系列尖 晶石的致色原因都与元素 Fe 和 Co 相关, 此外, 合成 蓝色系列尖晶石的致色原因还与元素 Cr 相关;

5)天然尖晶石和焰熔法合成尖晶石的拉曼位 移一致,但由于受到荧光的干扰,焰熔法合成尖晶 石的拉曼谱强度较低,相对于天然尖晶石而言极不 明显;

6)天然尖晶石的半峰全宽均在10.0 cm⁻¹以上, 焰熔法合成尖晶石的半峰全宽在10.0 cm⁻¹以下。

总之,光谱特征可以用于鉴别天然尖晶石和焰 熔法合成尖晶石,该方法客观直接且简单无损。

参考文献

- [1] Li Y L, Xue Q F, Li L P, et al. Gemology course
 [M]. Wuhan: China University of Geosciences Press, 2011.
 李娅莉,薛秦芳,李立平,等.宝石学教程[M].武 汉:中国地质大学出版社,2011.
- [2] He X M, Shen C Q. Synthetic technology of gemstones[M]. 2nd ed. Beijing: Chemical Industry Press, 2010.
 何雪梅,沈才卿.宝石人工合成技术[M].2版.北

京:化学工业出版社,2010.

[3] Xie Y H. Gemological character and analysis on composition of spinel with different colors from Burma[J]. Jewellery Science and Technology, 2003, 15(1): 56-57

谢意红.不同颜色缅甸尖晶石的宝石学特征及其成 分分析[J].珠宝科技,2003,15(1):56-57

[4] Yang Y. Gemological characteristics of red spinels
[J]. Shanxi Science and Technology, 2011, 26(1):
92-93.
セート 体育工作体育工作体育工作体育工作体育工作体育工作和

杨云.红色尖晶石的宝石学特征研究[J].山西科技,2011,26(1):92-93.

- [5] Zhang S Y, Shen X T. Characteristic of natural cobalt blue spinel[J]. Journal of Gems & Gemmology, 2018, 20(S1): 24-26.
 张舒妍,沈锡田.天然钻尖晶石的宝石学和光谱学 特征[J].宝石和宝石学杂志, 2018, 20(S1): 24-26.
- [6] Zhu J R, Yu X Y. Inclusions of spinel from Burma
 [J]. Journal of Gems & Gemmology, 2018, 20
 (S1): 18-23.
 朱静然,余晓艳.缅甸尖晶石的包裹体成分[J].宝石和宝石学杂志, 2018, 20(S1): 18-23.
- [7] Liu X, Qin Y. Identification of natural blue spinel and its imitations [J]. Hunan Nonferrous Metals, 2020, 36(3): 77-80.
 刘欣,秦毅.天然蓝色尖晶石及其仿冒品的鉴别 [J]. 湖南有色金属, 2020, 36(3): 77-80.
- [8] D'Ippolito V, Andreozzi G B, Hålenius U, et al. Color mechanisms in spinel: cobalt and iron interplay for the blue color [J]. Physics and Chemistry of Minerals, 2015, 42(6): 431-439.
- [9] Bersani D, Lottici P P. Applications of Raman spectroscopy to gemology[J]. Analytical and Bioanalytical Chemistry, 2010, 397(7): 2631-2646.
- [10] D'Ippolito V. Linking crystal chemistry and physical properties of natural and synthetic spinels: an UV-Vis-NIR and Raman study [D]. Roma: Sapienza University, 2013.
- [11] Zu E D, Sun Y D, Zhang P X. The analysis of natural and synthetic ruby by Raman spectra[J]. Spectroscopy and Spectral Analysis, 2010, 30(8): 2164-2166.
 祖恩东,孙一丹,张鹏翔.天然、合成红宝石的拉曼

光谱分析[J]. 光谱学与光谱分析, 2010, 30(8): 2164-2166.

- [12] Kang Y N, Tian Y H, Zu E D. Analysis of natural and synthetic sapphire by Raman spectra[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2015, 40(6): 20-22,49. 康亚楠,田云辉,祖恩东.天然蓝宝石与合成蓝宝 石的拉曼光谱研究[J].昆明理工大学学报(自然科 学版), 2015, 40(6): 20-22,49.
- [13] Cao P, Zu E D. Infrared and Raman spectrum analysis of natural alexandrite and synthetic alexandrite by pulling method [J]. Journal of Mineralogy and Petrology, 2016, 36(1): 8-11.
 曹盼,祖恩东.天然变石和提拉法合成变石的红外-

拉曼光谱分析[J]. 矿物岩石, 2016, 36(1): 8-11.

- [14] Cao P, Kang Y N, Zu E D. Study on Raman spectrum of natural emerald and synthetic emerald by hydrothermal method [J]. The Journal of Light Scattering, 2016, 28(1): 42-44.
 曹盼,康亚楠,祖恩东.天然祖母绿和水热法合成 祖母绿的拉曼光谱分析[J].光散射学报, 2016, 28 (1): 42-44.
- [15] Cao P, Yu L, Zu E D. Study on Raman spectrum of natural crystal and synthetic crystal by hydrothermal method[J]. The Journal of Light Scattering, 2017, 29(1): 50-53.
 曹盼,虞澜,祖恩东.天然水晶和水热法合成水晶 的拉曼光谱分析[J].光散射学报, 2017, 29(1): 50-53.
- [16] Zhou Y Y, Xiao Y C, Sun L J, et al. Optical-fiber fluorescent probes [J]. Laser & Optoelectronics Progress, 2020, 57(1): 010003.
 周艳焰,肖永川,孙力军,等.光纤荧光探针[J].激 光与光电子学进展, 2020, 57(1): 010003.
- [17] Xu L, Zhang Z R, Dong F Z, et al. Analytical method of spectral overlapping interference using laser

absorption spectroscopy [J]. Laser & Optoelectronics Progress, 2019, 56(19): 193003.

许丽,张志荣,董凤忠,等.激光吸收光谱中谱线重 叠干扰的解析方法[J].激光与光电子学进展, 2019,56(19):193003.

- [18] Wang H, Zhao D P, Liu R H, et al. Compatible stealth photonic crystal for visible-light, far-infrared, and multi-wavelength lasers [J]. Laser & Optoelectronics Progress, 2019, 56(18): 181602.
 王航,赵大鹏,刘瑞煌,等.可见光、远红外与多种 激光兼容的隐身光子晶体[J]. 激光与光电子学进展, 2019, 56(18): 181602.
- [19] Liu J, Li J X, Bai C X, et al. Theory and method of Fourier transform hyperspectral Mueller matrix imaging [J]. Acta Optica Sinica, 2020, 40 (7): 0711004.
 刘杰,李建欣,柏财勋,等.傅里叶变换高光谱 Mueller矩阵成像理论与方法[J].光学学报, 2020, 40(7): 0711004.
- [20] Qi L J, Yuan X Q, Cao S. Representation and application of infrared reflection spectra of gems [J]. Journal of Gems & Gemmology, 2005, 7(4): 21-25. 元利剑,袁心强,曹姝.宝石的红外反射光谱表征及 其应用[J].宝石和宝石学杂志, 2005, 7(4): 21-25.
- [21] Li S. Application of Fourier transform infrared spectroscopy and Raman spectroscopy in gemstone identification [J]. Rock Mineralogy, 2002, 21 (S1): 154-156.
 李胜.傅立叶红外光谱及拉曼光谱技术在宝玉石鉴 定方面的应用[J]. 岩石矿物学,2002,21(S1): 154-156
- [22] Xu P C, Li R B. Raman spectroscopy in geosciences [M]. Xi'an: Shaanxi Science and Technology Press, 1996.

徐培苍, 李如璧, 等. 地学中的拉曼光谱[M]. 西 安: 陕西科学技术出版社, 1996.